引用本文:[点击复制]
[点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2898次   下载 19 本文二维码信息
码上扫一扫!
基于风险调整模型的血液透析相关感染监管研究
0
()
摘要:
目的 构建血液透析相关感染风险调整模型,创新医院感染监管。方法 对某三甲医院2014年1月—2015年3月血液透析的慢性肾衰竭患者数据(构建样本305个和验证样本98格),运用Logistic回归构建风险调整模型并检验,同时利用验证样本验证模型可靠性。结果 构建样本院感率为20.66%,住院日、在多家医院血液透析过、输血、激素为风险调整因素(OR=1.08、4.49、2.77、8.78;P=0.000、0.000、0.005、0.000;95%CI=[0.04,0.12]、[0.80,2.20]、[1.23,3.11]、[0.31,1.73]),模型拟合优度P=0.82,ROC曲线下面积为0.76。结论 依据4个风险调整因素可构建血液透析相关感染风险调整模型,创新医院感染监管,提高医疗质量。
关键词:  血液透析  医院感染  风险调整  医疗质量
DOI:
基金项目:
A Study on the Regulation of Hemodialysis Associated Infection Based on a Risk-Adjustment Model
()
Abstract:
Objective To derive a risk-adjustment model of hemodialysis associated infection(HAI) for the healthcare-associated infection(HCAI) regulation innovation. Method Data of hemodialysis patients with chronic renal failure in 2014.1—2015.3 was collected(305 derivation sample and 98 validation sample) in a tertiary hospital. Logistic regression model was used to derive a risk-adjustment model and a validation sample was also used to validate the model. Result HAI developed in 20.66% of the derivation sample. Length of stay,receiving hemodialysis in more than one hospital,blood transfusions and using hormone before infection were found to be associated with infection(OR=1.08、4.49、2.77、8.78;P=0.000、0.000、0.005、0.000;95%CI=[0.04,0.12]、[0.80,2.20]、[1.23,3.11]、[0.31-1.73]). Goodness of fit,P=0.82 and the area under ROC was 0.76. Conclusion A risk-adjustment model can be developed based on four risk factors. It may provide a method to innovative HCAI regulation and to promote quality of care.
Key words:  hemodialysis,healthcare-associated infection,risk adjustment,quality of care

用微信扫一扫

用微信扫一扫